张达, 石雅倩, 刘强, 冀虎, 陶志达, 吴彦博, 戴锐. 基于能量分布特征的矿山微震和爆破信号自动识别研究[J]. 中国矿业, 2021, 30(10): 84-89. DOI: 10.12075/j.issn.1004-4051.2021.10.012
    引用本文: 张达, 石雅倩, 刘强, 冀虎, 陶志达, 吴彦博, 戴锐. 基于能量分布特征的矿山微震和爆破信号自动识别研究[J]. 中国矿业, 2021, 30(10): 84-89. DOI: 10.12075/j.issn.1004-4051.2021.10.012
    ZHANG Da, SHI Yaqian, LIU Qiang, JI Hu, TAO Zhida, WU Yanbo, DAI Rui. Research on automatic identification of mine microseismic and blasting signals based on energy distribution characteristics[J]. CHINA MINING MAGAZINE, 2021, 30(10): 84-89. DOI: 10.12075/j.issn.1004-4051.2021.10.012
    Citation: ZHANG Da, SHI Yaqian, LIU Qiang, JI Hu, TAO Zhida, WU Yanbo, DAI Rui. Research on automatic identification of mine microseismic and blasting signals based on energy distribution characteristics[J]. CHINA MINING MAGAZINE, 2021, 30(10): 84-89. DOI: 10.12075/j.issn.1004-4051.2021.10.012

    基于能量分布特征的矿山微震和爆破信号自动识别研究

    Research on automatic identification of mine microseismic and blasting signals based on energy distribution characteristics

    • 摘要: 针对矿山现有微震监测系统实时性低、缺乏有效信号识别功能等问题,本文开展了基于能量分布特征的矿山微震和爆破信号自动识别方法研究,以推动矿山微震监测全自动处理技术发展。本文采用8层小波分解及系数重构的方法对矿山微震信号及爆破信号进行分解,了解各层小波系数重构频域的能量占比特征,研究发现,爆破信号能量主要集中在第三层和第四层,微震信号能量主要集中在第四层~第六层,因此,可通过该能量占比特征进行微震信号和爆破信号的识别。本文收集了矿山为期两个星期的生产数据,挑选出202条数据建立其能量占比特征的数据样本集,采用支持向量机原理,利用径向基函数对数据样本集进行学习训练,进而得到信号识别模型。最后收集195条矿山现场数据进行识别测试,结果表明,识别准确率达到86%,微震识别精确率达到90%以上,说明本文提出的信号识别方法能够有效实现矿山现场的微震信号与爆破信号的识别。

       

      Abstract: Aiming at the problems of low real-time performance and lack of effective signal recognition function of existing mine microseismic monitoring system,this paper carried out the research on automatic identification method of mine microseismic and blasting signals based on energy distribution characteristics,in order to promote the development of fully automatic processing technology of mine microseismic monitoring.In this paper,the method of 8-layer wavelet decomposition and coefficient reconstruction is used to decompose the mine microseismic signal and blasting signal to understand the energy proportion characteristics of each layer wavelet coefficient reconstruction frequency domain.It is found that the blasting signal energy is mainly concentrated in the third layer and the fourth layer,and the microseismic signal energy is mainly concentrated in the fourth layer to the sixth layer.The energy proportion feature can be used to identify microseismic signals and blasting signals.This paper collects the production data of the mine for two weeks,selects 202 pieces of data,establishes the data sample set of energy proportion characteristics,adopts the principle of support vector machine,and uses radial basis function to learn and train the data sample set,and then obtains the signal recognition model.Finally,195 mine field data are collected for identification test,and the results show that the accuracy rate of identification is 86%,and the accuracy rate of microseismic identification is more than 90%,which indicates that the proposed signal identification method can effectively realize the identification of microseismic signal and blasting signal in mine field.

       

    /

    返回文章
    返回