基于LSTM模型的冲击地压预测方法研究

    Research on prediction method of rock burst based on LSTM model

    • 摘要:

      预防冲击地压是煤矿开采过程中面临的重大难题,近些年来随着煤矿开采逐渐由浅层转向深层,我国煤矿发生冲击地压的次数随之增加。冲击地压严重威胁着煤矿工作人员的生命安全,并造成巨大的经济损失,因此对冲击地压预测研究尤为重要。传统预测方法只能分析冲击地压发生前少量前兆信息,无法做到根据历史信息预测未来冲击地压相关信号变化趋势。为了探究冲击地压预测方法,选用来自发生过冲击地压煤矿的岩石,利用TYJ-500KN微机控制电液伺服岩石剪切流变试验系统与SH-II声发射系统进行冲击地压相似模拟实验。将实验采集的抗压强度信号和声发射信号进行信息融合,利用具有记忆属性的长短期记忆神经网络(LSTM)预测数据。研究结果显示,预测数据与实际分析数据曲线拟合度高,数据中均方根误差最大值小于0.6,LSTM模型用于冲击地压预测具有良好的前景。

       

      Abstract:

      The prevention of rock burst is a major problem in coal mining.In recent years,with the gradual shift from shallow layer to deep layer of coal mining,the number of rock burst in coal mines has increased.Rock burst is a serious threat to the safety of coal mine workers and will bring huge economic losses,so it is particularly important to study the prediction of rock burst.The traditional prediction method can only analyze a small amount of precursor information before the occurrence of rock burst,and can not predict the change trend of future rock burst related signals according to the historical information.In order to explore the prediction method of rock burst,the research group selected rocks from coal mine with rock burst,and used TYJ-500KN microcomputer controlled electro-hydraulic servo rock shear rheological test system and SH-II acoustic emission system to carry out rock burst similarity simulation experiment.The compressive strength signals and acoustic emission signals collected in the experiment are fused,and the data are predicted by Long Short-Term Memory neural network(LSTM) with memory properties.The results show that the curve fitting between the predicted data and the actual analysis data is high,and the maximum root mean square error of the data is less than 0.6.The LSTM model has an excellent research prospect for the prediction of rock burst.

       

    /

    返回文章
    返回