基于文献计量的国内地质大数据研究态势分析

    Situation analysis of domestic geological big data research based on bibliometrics

    • 摘要: 基于2012—2022年间CNKI数据库收录的相关论文,对我国地质大数据领域的研究进行科学计量分析,以期为有关管理部门和广大同行了解近十年来国内地质大数据研究态势提供参考。研究结果表明:地质大数据研究在2015年之后受到更为广泛的关注,目前处于稳定高产期。发文量最大、影响力最大的研究机构网络有三个,其核心分别是中国地质调查局发展研究中心、中国地质大学(北京)和中国地质大学(武汉)。作者共现分析显示,形成了1个大型作者群和4个小型作者群,但该领域的核心作者群尚未形成。研究热点主要有地质大数据存储与管理、地质大数据挖掘流程及算法研究、地质大数据应用。其中,以机器学习、深度学习等方法为代表的地质大数据挖掘方法研究热度最高、成果最多;地质大数据应用探索的热点领域主要包括智能地质调查、矿产资源预测、地球化学、地质灾害预警、资源智能开采。研究热点整体上经历了三次转变,第一阶段(2013—2015年)研究热点主要有地质灾害预警、矿产预测等;第二阶段(2016—2018年)研究主要侧重于云计算、云平台等相关研究及地质资料的开发利用;第三阶段(2019年至今)以人工智能、知识图谱等为研究热点,进入智能地质的探索阶段,人工智能算法、地学知识图谱及大数据驱动与知识驱动的结合是当前地质大数据领域的研究前沿。

       

      Abstract: Based on the relevant papers collected in CNKI database from 2012 to 2022, the paper makes a scientometric analysis of the research in the field of geological big data in China, in order to provide reference for the relevant management departments and the general peers to understand the development trend and evolution of domestic geological big data research in the past decade. The results show that geological big data research has received more attention after 2015, and is currently in a stable and high-yield period. There are three research institution networks with the largest number of publications and the greatest influence, the core of which are the Development Research Center of China Geological Survey, China University of Geosciences(Beijing) and China University of Geosciences(Wuhan). Co-occurrence analysis shows that 1 large and 4 small groups of authors have been formed, but the core group of authors in this field has not yet been formed. The main research hotspots are geological big data storage and management, geological big data mining process and algorithm research, geological big data application. Among them, the geological big data mining methods represented by machine learning and deep learning have the highest research heat and the most achievements. The hot areas of geological big data application exploration mainly include intelligent geological survey, mineral resource prediction, geochemistry, geological disaster warning, and intelligent resource mining. In the first stage(2013-2015), the research hotspots mainly include geological disaster warning and mineral prediction. The second stage(2016-2018) mainly focuses on cloud computing, cloud platform and other related research and the development and utilization of geological data; The third stage(from 2019 to now) takes artificial intelligence and knowledge map as research hotspots, and enters the exploration stage of intelligent geology. Artificial intelligence algorithm, geological knowledge map, and the combination of big data-driven and knowledge-driven are the current research frontiers in the field of geological big data.

       

    /

    返回文章
    返回