基于改进猎人猎物优化算法的煤矿开采沉陷预计模型参数反演研究

    Research on parameter inversion of coal mining subsidence prediction model based on improved hunter-prey optimization algorithm

    • 摘要: 概率积分模型是分析煤炭开采引起地表变形规律的重要数学模型,通过概率积分模型可预计开采沉陷的关键参数,如何快速且准确地获取开采沉陷预计参数一直是学者关注的重点。为克服传统方法在这一领域的局限性,本文提出了一种基于改进猎人猎物算法(IHPO)的概率积分参数反演模型。IHPO是在标准猎人猎物算法(HPO)的基础上,引入Cubic映射初始化、透镜成像折射反向学习及强制切换策略等改进策略,显著增强了算法群体智能优化能力。将IHPO应用于概率积分参数反演,构建了基于IHPO的概率积分参数反演模型。模拟实验结果表明:IHPO反演概率积分预测参数相对误差控制在1.54%以内,参数拟合中误差不超过3.32,相较于HPO,其反演结果更为精确。此外,IHPO的参数反演模型具有良好的鲁棒性,能够抵御一定的粗差干扰、随机误差干扰及观测点缺失的影响,同时具有较强的全局搜索性能。在实际应用中,以顾桥煤矿1414(1)工作面为例,利用IHPO对其进行参数反演,反演结果的参数拟合中误差最大不超过8.92,其中,参数qtanβbθ的拟合中误差均小于0.50,体现了极高的准确性。基于IHPO预测的下沉值拟合中误差及水平移动值拟合中误差的平均值为93.99 mm,充分满足了实际工作面的精度需求,验证了该模型在煤炭开采沉陷预测中的有效性和实用性。

       

      Abstract: The probability integral model is an important mathematical model to analyze the law of surface deformation caused by coal mining. The key parameters of mining subsidence can be predicted through the probability integral model. How to quickly and accurately obtain the prediction parameters of mining subsidence has always been the focus of scholars. To overcome the limitations of traditional methods in this field, this paper proposes a probability integral parameter inversion model based on the improved hunter-prey optimization (IHPO) algorithm. Based on the standard hunter-prey optimization (HPO) algorithm, IHPO introduces some improved strategies such as cubic mapping initialization, lens imaging refraction reverse learning, and a forced switching strategy, which significantly enhances the swarm intelligence optimization ability of the algorithm. IHPO is applied to the inversion of probability integral parameters, and the inversion model of probability integral parameters based on IHPO is constructed. The simulation results indicate that the relative error of the inversion probability integral prediction parameters for IHPO is maintained below 1.54%, and the fitting error for these parameters does not exceed 3.32. This suggests that IHPO offers a more precise inversion outcome compared to HPO. In addition, the parameter inversion model of IHPO has good robustness, can resist the influence of gross error interference, random error interference and missing observation points, and has strong global search performance. In practical applications, at the 1414(1) working face of Guqiao Coal Mine, IHPO is used for parameter inversion. The maximum fitting error for the inversion results is no more than 8.92, with the fitting errors for parameters q, tanβ, b, and θ all below 0.50, demonstrating high accuracy. The average fitting error for subsidence and horizontal movement values predicted by IHPO is 93.99 mm, which fully satisfies the accuracy needs of the actual working face, confirming the model’s effectiveness and practicality in predicting coal mining-induced subsidence.

       

    /

    返回文章
    返回