云南省某石英砂岩矿提纯及尾矿综合利用研究

    Purification of a quartz sandstone mine in Yunnan Province and comprehensive utilization of its tailings

    • 摘要: 为了充分利用云南省某石英砂岩矿,在工艺矿物学研究的基础上,进行了选矿提纯实验研究,并基于提纯后石英尾矿的特性,进行了发泡陶瓷的制备条件研究。通过原矿工艺矿物学研究,结果表明,矿石中的石英主要呈中细粒砂状结构,粒度主要分布在0.1~0.4 mm之间,多数杂质矿物如高岭石、云母和长石等以胶结物形式存在于石英颗粒的边缘和裂隙,锆石和金红石则以碎屑形式存在;部分石英颗粒表面较为纯净,部分石英颗粒表面覆盖有大量尘点、黏土和杂质矿物,还有少量石英颗粒包裹着细粒的金红石和黏土等矿物,去除难度大,影响最终石英产品品质。基于矿石性质,选矿研究进行了各种工艺对比实验,结果表明,在原矿含SiO2 98.28%,Fe2O3 0.069%、TiO2 0.051%,采用“破磨筛分-重选除锆钛-磁选除铁杂-反浮选分离长石云母”的工艺,获得了产率为67.13%,SiO2含量99.87%,Fe2O3含量54 μg/g,Al2O3含量0.015%,TiO2含量17 μg/g,Cr2O3含量0.6 μg/g的石英砂精矿,达到《光伏玻璃用硅质原料》二级品的要求。对石英提纯后的尾矿,进行了原料比例、添加剂用量和烧制温度对发泡陶瓷强度、吸水率和表观密度的影响试验,结果表明,提纯后的石英尾矿与矿山附近某长石尾矿按质量比4∶6的比例,添加碳酸钠用量7%,造孔剂SiC用量1%,在马弗炉温度500 ℃中保温10 min后按照5 ℃/min的速率升温至1 200 ℃,烧制15 min,获得强度为12.46 MPa、吸水率为3.22%、表观密度为1.63 g/cm3、导热系数为0.062 W/(m·K)的发泡陶瓷,可用于建材领域。通过该工艺实现石英砂岩的高效回收,为同类型石英资源的综合利用提供了工艺参考。

       

      Abstract: To achieve the full-scale utilization of a quartz sandstone deposit in Yunnan Province, this paper systematically investigates ore beneficiation and foam ceramic synthesis using purified tailings, based on process mineralogy. Mineralogical analysis via chemical assays, X-ray diffraction (XRD), and scanning electron microscopy (SEM) reveals that the quartz primarily exhibits medium-fine grained sand textures (0.1-0.4 mm) with impurities distributed in distinct modes: kaolinite, mica, and feldspar occur as cementing agents along particle edges and fractures, while zircon and rutile exist as detrital inclusions. Notably, quartz surfaces exhibit heterogeneous impurity coverage—some particles are relatively clean, whereas others host surface-adhered clay/dust or encapsulate fine-grained rutile and clay minerals, This poses challenges for impurity removal and final product quality. A multi-stage beneficiation process of crushing-grinding-screening—gravity for zirconium-titanium removal—magnetic separation for iron impurities—reverse flotation for mica/feldspar separation is used for raw ore containing 98.28% SiO2, 0.069% Fe2O3, and 0.051% TiO2. This process yields a quartz concentrate with a SiO2 recovery rate of 67.13%, containing 99.87% SiO2, 54 μg/g Fe2O3, 0.015% Al2O3, 17 μg/g TiO2, and 0.6 μg/g Cr2O3, meeting Grade II specifications of Photovoltaic Glass Raw Materials. The purified quartz tailings are synergistically blended with proximal feldspar tailings (4∶6 mass ratio) for foam ceramic synthesis. Systematic optimization of sintering parameters—7% Na2CO3 (flux), 1% SiC (pore-forming agent), and a thermal regime of 10 min preheating at 500 ℃, followed by 5 ℃/min heating to 1 200 ℃ with 15 min holding—produced ceramics with superior properties: compressive strength 12.46 MPa, water absorption 3.22%, apparent density 1.63 g/cm3, and thermal conductivity 0.062 W/(m·K), fulfilling construction material requirements. This integrated strategy achieves 92.7% total resource utilization efficiency, establishing a closed-loop utilization model that aligns with circular economy principles. The methodology provides a technical blueprint for sustainable exploitation of analogous quartz resources.

       

    /

    返回文章
    返回