基于可变核卷积的轻量化斗齿检测网络

    Lightweight bucket tooth detection network based on AKConv

    • 摘要: 斗齿作为矿用机械正铲式挖掘机的关键易损部件,其磨损状态直接影响设备的工作效率和使用安全。由于斗齿在复杂作业环境下易受遮挡、粘连、泥污覆盖及光照条件变化等因素干扰,人工检测或基于传统图像处理技术的识别方法效率低、误差大,难以满足智能化施工管理的需求。因此,研究基于深度学习的斗齿目标检测技术具有重要的理论价值和现实意义。该研究基于可变核卷积(AKConv)、YOLOv12网络与数据增强算法,提出了一种适用于数据样本单一情况下的斗齿目标检测方法。该方法首先对已标定的原始斗齿数据集进行1∶1的随机数据增强,获得增强的斗齿图像及标签,模拟不同成像条件下的斗齿检测情景,提高数据集的多样性和鲁棒性;然后将增强后的数据集送入改进后的AKConv-YOLOv12网络中经过100次迭代训练,得到模型的Precision值为97.2%,Recall值为96.7%,mAP值(mean Average Precision)为98.0%,模型大小为4.8 MB,与原始YOLOv12网络相比,Precision值下降了1个百分点,Recall值下降了0.9个百分点,mAP值下降了0.6个百分点,但模型大小缩小了11.1%;最后将增强前后、不同遮挡的斗齿目标进行测试,检测的置信度均在0.8左右。研究结果表明,基于数据增强算法与AKConv-YOLOv12的斗齿小样本目标检测方法解决了单一数据样本的问题,使得模型具有较高的鲁棒性和稳定的检测性能;同时在保证检测精度基本不变的情况下,明显缩小了模型大小,提高了模型的可移植性,可为矿山机械、挖掘机运维等研究提供必要的技术支撑。

       

      Abstract: As a key vulnerable component of mining mechanical front shovel excavators, the wear condition of bucket teeth directly affects equipment operational efficiency and safety. However, due to complex working environments where bucket teeth are prone to occlusion, adhesion, mud coverage, and variable lighting conditions, manual inspection or traditional image processing-based detection methods exhibited low efficiency and high error rates, failing to meet the demands of intelligent construction management. Therefore, researching on deep learning-based object detection for bucket teeth holds significant theoretical and practical value. This study proposes a bucket teeth detection method suitable for limited data samples, integrating adjustable kernel convolution(AKConv), the YOLOv12 network, and a data augmentation algorithm. First, the labeled original bucket teeth dataset is augmented with a 1∶1 random data enhancement strategy to generate diversified images and labels, simulating bucket teeth detection scenarios under varying imaging conditions and improving dataset diversity and robustness. The augmented dataset is then fed into the improved AKConv-YOLOv12 network for 100 training iterations, achieving a precision of 97.2%, recall of 96.7%, and mAP(mean Average Precision) of 98.0%, with a model size of 4.8 MB. Compared to the original YOLOv12 network, the precision and recall decreases by 1.0 and 0.9 percentage points, respectively, while the mAP drops by 0.6 percentage points. However, the model size is reduced by 11.1%. Finally, tests on both augmented and non-augmented datasets under varying occlusion levels demonstrated detection confidence levels consistently around 0.8. The results indicate that the proposed small-sample detection method, combining data augmentation and AKConv-YOLOv12, effectively addressed the limitations of homogeneous data samples, ensuring high robustness and stable detection performance. Moreover, while maintaining nearly equivalent accuracy, the model size is significantly reduced, enhancing portability. This approach provided essential technical support for research on mining machinery and excavator maintenance.

       

    /

    返回文章
    返回