基于MS-IF-AdaBoostM1的井下设备异常检测研究

    Research on anomaly detection of underground equipment based on MS-IF-AdaBoostM1

    • 摘要: 煤矿井下复杂环境导致机电设备故障居高不下,直接影响生产安全与效率。现有异常检测方法在应对多场景时存在泛化能力不足的缺陷。本文基于累计频次规则和持续时间规则场景,通过分析神东煤炭集团某煤矿设备生产数据,提出基于机器学习技术,构建了融合多尺度时间窗口的Isolation Forest算法与AdaBoostM1算法的异常检测集成模型(MS-IF-AdaBoostM1)。实验结果表明该模型的检测准确率显著高于单模型,验证双模型的优越性,为井下设备异常检测提供新方法。

       

      Abstract: The complex underground environment in coal mines leads to a high incidence of mechanical and electrical equipment failures, directly impacting production safety and efficiency. Existing anomaly detection methods suffer from insufficient generalization capabilities when applied to multiple scenarios. This paper, based on cumulative frequency rules and duration rules, analyzes production data from a coal mine in Shendong Coal Group and proposes an anomaly detection integrated model(MS-IF-AdaBoostM1) using machine learning technology. This model combines the Isolation Forest model and the AdaBoostM1 model with multi-scale time windows. Experimental results show that the detection accuracy of this model is significantly higher than that of a single model, validating the superiority of the dual-model approach and providing a new method for anomaly detection in underground equipment.

       

    /

    返回文章
    返回