介质阻挡放电协同净化矿用柴油车尾气中乙烯的工艺优化及机理分析

    Process optimization and mechanism analysis of dielectric barrier discharge synergistic purification of ethylene in mining diesel exhaust

    • 摘要: 为有效去除矿用柴油车尾气中的烃类污染物,提高净化效率并优化工艺参数,构建了介质阻挡放电(DBD)低温等离子体反应器,以乙烯为烃类物质代表性模拟物,采用单因素实验和Box-Behnken响应面设计相结合的方法,系统考察放电电压、气体初始浓度和进口流量对净化效果的影响规律,建立二次回归模型并优化工艺参数。在放电电压0~35 kV范围内,乙烯去除率呈先升后降趋势,25 kV时达到最高72%;随初始浓度(0~450 ppm)增加,去除率显著下降;进口流量在1~6 L/min范围内呈抛物线分布,3 L/min时效果最佳。响应面分析建立的二次回归模型相关系数R2=0.965,各因素影响重要性排序为进口流量>放电电压>初始浓度。优化得到最佳工艺参数:放电电压19.54 kV、初始浓度249.44 ppm、进口流量2.99 L/min,预测乙烯去除率69.26%,验证实验误差仅1.18%。NOx的加入使乙烯去除率提高10%~20%。本文研究确定的优化参数和协同净化机理为DBD技术在矿用柴油车尾气净化中的工程化应用提供了理论依据。

       

      Abstract: To effectively remove hydrocarbon pollutants from mining diesel exhaust and optimize purification process parameters, a dielectric barrier discharge(DBD) non-thermal plasma reactor is constructed using ethylene as a representative simulant of hydrocarbons. Single-factor experiments combined with Box-Behnken response surface design are employed to systematically investigate the effects of discharge voltage, initial gas concentration, and inlet flow rate on purification efficiency. A quadratic regression model is established to optimize process parameters. Within the discharge voltage range of 0-35 kV, ethylene removal efficiency shows an initial increase followed by a decrease, reaching a maximum of 72% at 25 kV. Removal efficiency decreases significantly with increasing initial concentration (0-450 ppm). Inlet flow rate exhibits a parabolic distribution within 1-6 L/min, with optimal performance at 3 L/min. The response surface analysis yields a quadratic regression model with R2=0.965. Factor importance ranking: inlet flow rate>discharge voltage>initial concentration. Optimal parameters: discharge voltage 19.54 kV, initial concentration 249.44 ppm, inlet flow rate 2.99 L/min, with predicted removal efficiency of 69.26% and experimental error of only 1.18%. NOx addition enhanced ethylene removal by 10%-20%. The optimized parameters and synergistic purification mechanism provide theoretical foundation for engineering applications of DBD technology in mining diesel vehicle exhaust purification.

       

    /

    返回文章
    返回