基于UE的综采工作面数字孪生仿真建设研究

    Research on the simulation construction of digital twin for fully mechanized mining working face based on UE

    • 摘要: 随着煤矿智能化建设的不断推进,综采工作面在设备协同、数据交互和远程监控方面仍存在实时性不足和交互体验有限等问题。针对这一现状,本文提出了一种基于Unreal Engine(UE)的综采工作面数字孪生仿真方法,并设计了分层架构的系统实现方案。该系统包括物理层、感知层、通信层、平台层和展示层五个部分:通过多源传感器实现设备运行与环境参数的实时采集,经由5G与WebSocket通道传输至平台层,在MySQL数据库与MemoryCache缓存支持下完成数据清洗与快速处理;展示层则通过Web界面与UE5.3引擎驱动的三维仿真模块实现设备状态的可视化和交互。研究重点突破了UE仿真建模中的关键技术,包括高保真设备建模、Chaos物理引擎动态仿真、交互逻辑蓝图编程,以及Pixel Streaming远程渲染,使虚拟场景能够在低延时条件下同步映射物理工作面运行状态。应用结果表明,该系统在典型煤矿综采工作面实现了设备状态的动态监控与预警,显著提升了操作效率、环境透明度和远程运维能力。本文研究为构建高真实感、强交互性和高实时性的综采工作面数字孪生平台提供了新思路,并为矿山智能化开采提供了参考价值。

       

      Abstract: With the continuous advancement of intelligent mining, fully mechanized mining working faces still face challenges in equipment collaboration, data interoperability, and real-time remote monitoring. To address these issues, this paper proposes a digital twin simulation method for fully mechanized mining working faces based on Unreal Engine (UE) and designs a layered system architecture. The system consists of five layers: the physical layer, perception layer, communication layer, platform layer, and presentation layer. Multi-source sensors are deployed to acquire equipment operation and environmental parameters in real time. The collected data are transmitted through 5G and WebSocket channels to the platform layer, where MySQL and MemoryCache ensure efficient data cleaning, processing, and storage. At the presentation layer, a Web interface and a UE5.3-based 3D simulation module are used for visualization and interaction. Key innovations include high-fidelity 3D modeling, dynamic physical simulation with the Chaos engine, blueprint-driven interaction logic, and Pixel Streaming technology, enabling low-latency synchronization between physical operations and virtual scenes. Application results show that the system achieves dynamic monitoring and intelligent warning of key equipment, significantly improving operational efficiency, situational awareness, and remote maintenance capabilities. This research provides a new approach for constructing high-fidelity, interactive, and real-time digital twin platforms for coal mining faces, laying a solid foundation for intelligent and unmanned mining.

       

    /

    返回文章
    返回