大数据驱动下矿山安全管理路径与模式研究

    Research on the path and mode of mine safety management driven by big data

    • 摘要: 大数据技术为矿山安全管理提供了从被动响应向主动预防转型的革新路径。本文系统阐述了大数据驱动下矿山安全管理的核心路径、关键模式与实施框架。本文研究提出以“数据感知-模型驱动-智能决策”为核心的技术框架,构建以多源物联感知、动态风险建模与人机协同决策的闭环体系为关键点的应用路径。在此基础上,聚焦三大核心应用模式:“数字孪生+预案推演”模式,通过虚实融合与动态仿真实现风险超前预控与应急方案优化;“预测性维护+设备健康管理”模式,基于设备运行数据与预测模型实现故障早期预警与全生命周期健康管理;“行为画像+智能监管”模式,利用定位与AI技术量化人员安全特征,实现精准监管与风险预警。进而,提出了包含多源感知层、数据治理层、智能模型层、决策应用层和迭代优化层五个层级的关键实施框架,明确了从数据采集、治理分析到智能决策与持续优化的全流程。该研究为矿山安全管理的智能化转型提供了系统的理论支撑与实践范式,对提升矿山本质安全水平具有重要意义。

       

      Abstract: Big data technology provides an innovative path for the transformation of mine safety management from passive response to active prevention. This paper systematically elaborates on the core pathways, key models, and implementation frameworks of mine safety management driven by big data. The study proposes a technical framework centered on “data perception-model-driven-intelligent decision-making”, and constructs an application path that focuses on a closed-loop system integrating multi-source IoT perception, dynamic risk modeling, and human-machine collaborative decision-making. Building on this, it focuses on three core application modes: the “digital twin + plan deduction” mode, which achieves advanced risk pre-control and emergency plan optimization through virtual-real integration and dynamic simulation; the “predictive maintenance + equipment health management” mode, which enables early fault warning and full lifecycle health management based on equipment operation data and predictive models; and the “behavioral profiling + intelligent supervision” mode, which utilizes positioning and AI technologies to quantify personnel safety characteristics, enabling precise supervision and risk warning. Furthermore, it proposes a key implementation framework comprising five layers: multi-source perception, data governance, intelligent modeling, decision application, and iterative optimization, clarifying the entire process from data collection and governance analysis to intelligent decision-making and continuous optimization. This research provides systematic theoretical support and a practical paradigm for the intelligent transformation of mine safety management, holding significant importance for enhancing the intrinsic safety level of mines.

       

    /

    返回文章
    返回