人工智能赋能矿业风险勘查市场:演化机理与实现路径

    AI empowering the mining risk-exploration market: evolutionary mechanisms and implementation pathways

    • 摘要: 在全球矿产资源需求攀升与绿色低碳转型的双重背景下,矿业风险勘查市场作为战略性矿产供给保障的核心环节,面临要素流动性不足、信息不对称、政策支持缺位等多重困境。人工智能(Artificial Intelligence,AI)凭借大数据分析、风险预测与智能决策优势,为破解上述瓶颈提供了关键技术路径。本文基于协同理论,系统剖析AI赋能矿业风险勘查市场的演化机理与实现路径。研究结果表明,全球风险勘查市场已形成以多伦多证券交易所(TSX)、澳大利亚证券交易所(ASX)等六大证券交易所为核心的格局,AI技术通过资源资产智能化定价、风险预测建模、ESG金融工具创新等路径,深度渗透勘查全流程。我国风险勘查市场则存在数据基础薄弱、矿业权流动性不足、政策监管滞后、复合型人才短缺及中介服务生态不成熟等问题,制约AI赋能效能。从机理看,AI赋能遵循“协同形成-协同过程-协同效能”的底层逻辑。以数据整合与市场需求推动多元主体达成目标共识,通过信息流、资金流、政策流的动态耦合实现良性循环,最终提升市场经济效率、安全水平与可持续性;其协同机理可概括为“序参量驱动-耦合增强-突变演化-稳态优化”四阶段路径,AI以数据透明度、风险可预测性、智能定价为序参量,推动市场从分散低效向证券化、数字化的高效稳态演进。据此,本文提出实现路径与政策建议。基础设施层面,构建主权AI矿业数据体系与算力平台,开发可解释AI模型;生态层面,培育专业服务企业与产学研联盟;政策层面,需加强数据开放共享、完善算法治理、拓展绿色金融支持、强化跨境监管协同,为AI赋能营造制度环境。

       

      Abstract: In the context of surging global demand for mineral resources and an accelerated shift toward green, low-carbon development, the mining risk-exploration market—central to securing supplies of strategic minerals—faces multiple constraints, including limited factor mobility, pronounced information asymmetries, and insufficient policy support. Artificial intelligence(AI), leveraging strengths in big-data analytics, risk forecasting, and intelligent decision-making, offers critical technological pathways to overcome these bottlenecks. Drawing on synergetics, this study systematically elucidates the evolutionary mechanisms and implementation pathways through which AI empowers the mining risk-exploration market. The analysis shows that the global risk-exploration landscape has coalesced around six major stock exchanges, with the Toronto Stock Exchange(TSX) and Australian Stock Exchange(ASX) bourses playing especially pivotal roles; across this architecture, AI is permeating the entire exploration value chain via intelligent pricing of resource assets, risk-prediction modeling, and innovations in ESG-linked financial instruments. By contrast, China’s risk-exploration market continues to be hampered by a weak data foundation, illiquidity of mineral rights, lagging policy and regulatory frameworks, shortages of interdisciplinary talent, and an underdeveloped intermediary-service ecosystem—factors that collectively constrain the efficacy of AI enablement. Mechanistically, AI empowerment follows the synergetic logic of “synergy formation-synergy processes-synergy performance.” Data integration and market demand first align heterogeneous actors around shared objectives; dynamic coupling among information, capital, and policy flows then generates a virtuous cycle, ultimately improving market efficiency, security, and sustainability. The underlying coordination mechanism can be summarized as a four-stage trajectory of “order-parameter activation coupling amplification-phase transition-steady state optimization”, where AI establishes data transparency, risk predictability, and intelligent pricing as the salient order parameters that drive the market’s transition from a fragmented, low-efficiency equilibrium to a securitized and digital, high-efficiency steady state. Correspondingly, it proposes the following implementation pathways and policy recommendations: at the infrastructure layer, build a sovereign AI mining-data system and computing platform, develop interpretable AI models; at the ecosystem layer, cultivate specialized service providers and industry-university-research alliances; and at the policy layer, enhance data openness and sharing, improve algorithm governance, expand green-finance support, and strengthen cross-border regulatory coordination—thereby establishing a robust institutional environment for AI-enabled transformation.

       

    /

    返回文章
    返回